Elliptical instability in terrestrial planets and moons

نویسندگان

  • David Cébron
  • Michael Le Bars
  • Claire Moutou
  • Patrice Le Gal
  • D. Cebron
  • M. Le Bars
  • C. Moutou
  • P. Le Gal
چکیده

Context. The presence of celestial companions means that any planet may be subject to three kinds of harmonic mechanical forcing: tides, precession/nutation, and libration. These forcings can generate flows in internal fluid layers, such as fluid cores and subsurface oceans, whose dynamics then significantly differ from solid body rotation. In particular, tides in non-synchronized bodies and libration in synchronized ones are known to be capable of exciting the so-called elliptical instability, i.e. a generic instability corresponding to the destabilization of two-dimensional flows with elliptical streamlines, leading to three-dimensional turbulence. Aims. We aim here at confirming the relevance of such an elliptical instability in terrestrial bodies by determining its growth rate, as well as its consequences on energy dissipation, on magnetic field induction, and on heat flux fluctuations on planetary scales. Methods. Previous studies and theoretical results for the elliptical instability are re-evaluated and extended to cope with an astrophysical context. In particular, generic analytical expressions of the elliptical instability growth rate are obtained using a local WKB approach, simultaneously considering for the first time (i) a local temperature gradient due to an imposed temperature contrast across the considered layer or to the presence of a volumic heat source and (ii) an imposed magnetic field along the rotation axis, coming from an external source. Results. The theoretical results are applied to the telluric planets and moons of the solar system as well as to three Super-Earths: 55 CnC e, CoRoT-7b, and GJ 1214b. For the tide-driven elliptical instability in non-synchronized bodies, only the Early Earth core is shown to be clearly unstable. For the libration-driven elliptical instability in synchronized bodies, the core of Io is shown to be stable, contrary to previously thoughts, whereas Europa, 55 CnC e, CoRoT-7b and GJ 1214b cores can be unstable. The subsurface ocean of Europa is slightly unstable. However, these present states do not preclude more unstable situations in the past.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Earth-like worlds on eccentric orbits: excursions beyond the habitable zone

Many of the recently discovered extrasolar giant planets move around their stars on highly eccentric orbits, and some with e& 0±7. Systems with planets within or near the habitable zone (HZ) will possibly harbour life on terrestrial-type moons if the seasonal temperature extremes resulting from the large orbital eccentricities of the planets are not too severe. Here we use a three-dimensional g...

متن کامل

Comparative Planetology

The chemical compositions, interior structures, surfaces, evolutions, and magnetic fields of the planets and the major moons are compared in this article. The planets are largely of solar composition but differ in their depletion in volatile elements. The degree of depletion increases with decreasing mass and with decreasing distance from the sun with Jupiter being closest in composition to the...

متن کامل

Exponential law as a more compatible model to describe orbits of planetary systems

  According to the Titus-Bode law, orbits of planets in the solar system obey a geometric progression. Many investigations have been launched to improve this law. In this paper, we apply square and exponential models to planets of solar system, moons of planets, and some extra solar systems, and compare them with each other.

متن کامل

No Pseudosynchronous Rotation for Terrestrial Planets and Moons

We re-examine the popular belief that a telluric planet or a satellite on an eccentric orbit can, outside a spin–orbit resonance, be captured in a quasi-static tidal equilibrium called pseudosynchronous rotation. The existence of such configurations was deduced from oversimplified tidal models assuming either a constant tidal torque or a torque linear in the tidal frequency. A more accurate tre...

متن کامل

Elliptical craters and basins on the terrestrial planets

The four largest well-preserved impact basins in the solar system, Borealis, Hellas, and Utopia on Mars, and South Pole–Aitken on the Moon, are all signifi cantly elongated, with aspect ratios >1.2. This population stands in contrast to experimental studies of impact cratering that predict <1% of craters should be elliptical, and the observation that ~5% of the small crater population on the te...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017